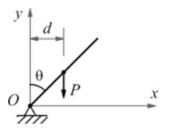

Università di Catania Corso di Laurea in Fisica Compito scritto di Fisica Generale I M.G. Grimaldi – A. Insolia

Catania, 10 Settembre 2014

Per la prova in itinere (2 ore) svolgere i problemi: 3, 4, 5 Per la prova completa (3 ore) svolgere i problemi: 1, 2, 4, 5

Problema n.1


Un corpo A di massa $m_A=2kg$ è collegato tramite una fune A ideale, di lunghezza $2\ell=4m$, ad un corpo B di massa $m_B=3kg$ tramite una carrucola O (vedi figura). Inizialmente il corpo B è appoggiato su un piano orizzontale ed il tratto di filo OB è verticale, mentre il corpo A, in quiete, è tenuto col tratto di filo OA teso ed orizzontale. Si lascia libero il corpo A (come un pendolo). Si determini di quanto si abbassa il corpo A, in verticale, prima che il corpo B si stacchi dal piano d'appoggio.

Problema n.2

Calcolare la velocità periferica dell'estremo libero di un'asta omogenea lunga l=2m e di massa m=2kg incernierata ad un estremo che abbandona la sua posizione verticale di equilibrio (vedi figura), quando l'asta raggiunge la posizione orizzontale.

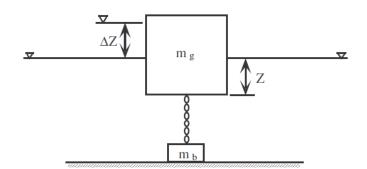
[N.B. Attenzione: l'accelerazione angolare è funzione dell'angolo θ]

Problema n.3

Un pezzetto di ghiaccio di massa m_1 e temperatura T_1 =250 K viene immerso in m_2 =60 g di acqua a temperatura T_2 =330 K. Se il sistema è contenuto in un recipiente a pareti adiabatiche,

- a) Si determini per quali valori della massa m_1 il pezzetto di ghiaccio fonde completamente.
- b) Calcolare la temperatura di equilibrio del sistema se la massa del cubetto di ghiaccio vale m_I =35g.

Il calore specifico del ghiaccio vale c_g =2051 J/kgK, il calore specifico dell'acqua vale c_a =4186.8 J/kgK ed il calore latente di fusione del ghiaccio è pari a λ =3.3x10⁵ J/kg.


Problema n.4

Tre moli di un gas ideale monoatomico vengono portate dallo stato A allo stato B mediante una espansione adiabatica nel vuoto. Successivamente, il gas viene portato allo stato C tramite una compressione adiabatica irreversibile. Infine il gas viene posto a contatto con una sorgente a temperatura T_A e ritorna allo stato iniziale A con una trasformazione isobara irreversibile. Sono dati la temperatura T_A =300 K, la pressione p_A =2x10 5 Pa ed il lavoro compiuto nella trasformazione BC, W_{BC} =-3.7x10 4 J. Determinare:

- a) Il volume dello stato C
- b) La variazione di entropia dell'universo. [NB: l'ambiente è la sorgente a temperatura TA]

Problema n.5

Un galleggiante cubico di lato L=1.2~m ha una massa $m_G=180~kg$ ed è ancorato mediante una catena di massa trascurabile ad un blocco di cemento di massa $m_b=680~kg$. Nella configurazione normale il galleggiante è immerso per Z=23~cm e il blocco è adagiato sul fondo. La densità dell'acqua vale $\rho=10^3~kg/m^3$. Calcolare:

- a) La forza con cui è sollecitata la catena;
- b) L'innalzamento dell'acqua ΔZ (cioè il galleggiante si trova immerso per $Z+\Delta Z$) necessario per sollevare il blocco dal fondo.